

FLEPOSTORE

CERAMIC HAND SPECIMEN & THIN SECTION DESCRIPTION

https://flepostore.ugent.be/

1 ELEMENTS INCLUDED IN THE HAND SPECIMEN & PETROGRAPHIC DESCRIPTIONS

The following guidelines are based on the methodology for petrographic descriptions as described by Quinn 2013.

1. Matrix

- General colour of the fabric in hand-specimen, plane polarized light (PPL) and crossed polars (XP)
- Oxidization state: oxidized (OX), reduced (RED) or combination (RED-OX)
- Matrix texture: homogenous, semi-homogenous, semi-heterogeneous, heterogeneous
- Clay nature: e.g. (non-)calcareous, micaceous, iron-rich
- Optical activity: no, low, medium, high
- Abundance: estimation of matrix percentage (= 100 %inclusions %voids)
 Figure 1

2. Inclusions

List of mineral and non-mineral inclusions (> 0.008 mm) containing:

- Identification of mineral and lithic inclusions
- Frequency estimation of each mineral and lithic inclusion (++, +, +-, -, --)
- Relevant specific observations concerning shape, size, composition, etc. that are not implied by naming the inclusion or included in the general observations (below)
- If bimodal: presence/absence of inclusions in coarse fraction (cf) or fine fraction (ff)

General observations regarding:

- Grain size: very fine, fine, medium, coarse, very coarse silt/sand (Figure 2)
- Grain shape: rounded (r), sub-rounded (sr), sub-angular (sa), angular (a) (Figure 4)
- If bimodal: relation between fine and coarse fraction (natural variation, added temper, etc.)

Inclusion structure:

- Sorting: very well, well, moderately, poorly, very poorly (cf. sorting chart) (Figure 3)
- Orientation: very well, well, moderately, poorly, very poorly
- Spacing: close, single, double, open (cf. spacing definition)
- Abundance: estimation of inclusion percentage (cf. abundance estimation chart) (Figure 5)

Figure 1

3. Voids

- General void size (variation)
- Void types: planar, channel, vughs, vesicules, drying cracks (cf. void shape diagram) (Figure 6)
- Infill: no, soil, secondary calcite, etc.
- Alignment (to surface): very well, well, moderately, poorly, very poorly
- Abundance: estimation of void percentage (cf. abundance estimation chart) (Figure 5)

Figure 1

4. Diagnostic features

- General matrix attributes (oxidization, texture, optical activity)
- General porosity (low, medium, high)
- Main mineralogical and non-mineralogical inclusions. In order of frequency with semiquantitative frequency labels (dominant, frequent, common, few, rare)
- Observations regarding bimodality and/or tempering (if relevant)
- General sorting of the fabric (very well, well, moderately, poorly, very poorly) (Figure 3)

5. Additional information

- Observations not included within sections above
- Surface observations: slip, paint, glaze, post-depositional residue, etc.
- Technological observations: firing temperature, production relics (e.g. coils, clay mixing), etc.
- Similarities with other know thin sections

2 <u>LIST OF TERMINOLOGY, ABBREVIATIONS AND</u> <u>SYMBOLS</u>

General

PPL	plane polarized light
ХР	crossed polarized light

Mineralogy

Quartz - mono	monocrystalline quartz
Quartz – poly	polycrystalline quartz
O/Fe	opaque inclusions / iron oxides
CP/SP	clay pellets / semi-plastic inclusions
cf	coarse fraction
ff	fine fraction

Inclusion shape

r	rounded
sr	subrounded
sa	subangular
а	angular
el	elongated
eq	equant

Semi-quantitative frequency labels

PAGE

3/8

Predominant	>70%
Dominant	50-70%
Frequent	30-50%
Common	15-30%
Few	5-15%
Very few	2-5%
Rare	0.5-2%
Very rare	<0.5%

Description of spacing

Close spaced	Inclusions in contact
Single spaced	Spacing = mean diameter
Double spaced	Spacing = 2x diameter
Open spaced	Spacing > 2x diameter

Frequency of inclusions

- ++ Dominant
- + Frequent
- +- Common
- Few
- -- Rare

Figure 1: Schematic representation of compositional elements in ceramic fabrics: matrix, inclusions and voids (from P. Quinn: Intensive Course on Ceramic Petrography & Geochemistry).

Millimeters (mm)	Micrometer	rs (μm)	Phi (ø)	Wentworth size of	lass
4096			-12.0	Boulder	
256 — -			-8.0 —		le/
64 — -			-6.0 _	Cobble	Gra∖
4 -			-2.0 —	Pebble	0
2.00			-1.0 —	Granule	
1.00 —			0.0 -	Very coarse sand	
1/2 0.50 -	500		10 -	Coarse sand	p
1/4 0.25	250		2.0	Medium sand	Sar
1/4 0.25 -	250		2.0 -	Fine sand	
1/8 0.125 -	125		3.0 -	Very fine sand	
1/16 0.0625	63		4.0 —	Coarse silt	
1/32 0.031 -	31		5.0 —		
1/64 0.0156 -	15.6		6.0 —		Silt
1/128 0.0078 -	7.8		7.0 —		
1/256 0.0039	3.9		8.0 —	very line sit	σ
0.00006	0.06		14.0	Clay	Mu

Figure 2: Grain size, Wentworth scale (Wentworth 1922).

SORTING IMAGES

Figure 3: Chart for the comparison of mineralogical sorting (after Pettijohn, Potter and Siever 1973). 0.35: well sorted, 0.50 moderately sorted, 1.00 poorly sorted, 2.00 very poorly sorted.

TITLE	DATE	PAGE
Ceramic hand specimen & thin section description	April 2021	6/8

Figure 4: Grain shape (after Powers 1953).

Figure 5: Abundance Estimation Chart (Terry and Chillingar 1955).

Figure 6: Shape of voids (after Stoops 2003).

3 **BIBLIOGRAPHY**

Pettijohn F.J., Potter P.E. & Siever R. 1973. Sand and sandstone. Springer, Berlin.

Powers M.C. 1953. A new roundness scale for sedimentary particles. *Journal of Sedimentary Research* 23, 2: 117-119.

Quinn P.S. 2013. Ceramic Petrography. The interpretation of Archaeological Pottery and related artefacts in thin section. Archeopress, Oxford.

Stoops G. 2003. *Guideline for analysis and description of soil and regolith thin sections*. Soil Science Society of America, Inc., Madison.

Terry R.D. & Chilingarian G.V. 1955. Summary of "Concerning some additional aids in studying sedimentary formations" by M.S. Shvetsov. *Journal of Sedimentary Petrology* 25: 229-234.

Wentworth C.R. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30: 377-392.

